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Quantum set theory permits the formulation of a quantum simplicial topology 
suitable for a quantum theory of time space and gravity without prior time space 
structure. The quantum simplex differs strikingly from the classical: It is iso- 
tropic ("points in all directions") and all quantum simplexes of the same 
signature are congruent. Quantum simplexes and complexes are described by S 
numbers, elements of the Clifford algebra of quantum sets. The isotropy groups 
of noncontiguous simplexes commute, like local invariance groups in a gauge- 
invariant theory. 

1. I N T R O D U C T I O N  

We have previously explored the possibility that the universe, which we 
assume is a discrete network, is similar to a Penrose spin network or a 
Feynman diagram. Now we suggest instead that the universe is a quantum 
simplicial complex like a Regge skeleton. This way we can, if need be, put in 
a posteriori  what we have not yet been able to get out a priori: the four 
dimensions of time space. We find that the topology of simplicial complexes 
may be expressed classically in the language of Grassmann algebra, and 
thus mates well with our quantum set theory, which is also a Grassmann 
algebra. Quantum simplicial topology turns out to have an important 
nonclassical continuous symmetry: quantum simplexes "poin t  in all direc- 
tions." To borrow a metaphor  from the old vector theory of the atom, the 
quantum simplex spins very rapidly about any axis. Like Penrose (in his 
theory of spin networks) and Weizsaecker (in his Ur theory), we find that 
the roundness and Lorentz invariance of local time space arise as a quantum 
effect, like the isotropy of an electronic s state. 

Ultimately, the Einstein time space must arise as a reduced 
coarse-grained low-temperature average. A plexic theory must be con- 
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structed without benefit of that time space, in intrinsic topological terms, 
like Feynman diagrams with time space removed, or Penrose-Yutzis 
spin networks with dynamics added, or Regge skeletons without their 
Minkowskian bone marrow. For this construction we use quantum algebraic 
topological elements we call plexors (Finkelstein, 1972) in general. A plexor 
is a tensor with an algebraic topology given on its indices. In this appli- 
cation the numerical value of a plexor component is the quantum amplitude 
for its topology. The archetype of all plexors is the following )U), built out 
of the "small" unitary operator or "plexon" )u) representing the passage of 
one unit of time in (say) Heisenberg's quantum theory: 

)u) =)u))u)...)u) 

This plexor )U) has the (tensor) product of n plexons )u) for its tensor; and 
for its topology, n arcs in series, representing the passage of n units of time. 
The usual Feynman amplitude for this process is the diagonal part of this 
plexor, and is one stage in the contraction of this tensor product to the usual 
inner product of the n factors )u). 

2. BUBBLES AND PLEXONS 

In quantum field theory we begin to construct a dynamical theory by 
naming a spacelike surface t = t (x ,  y, z) in time space, representing an 
instant of time of the universe (a nonoperational concept, it would seem). 
Tomonaga and Schwinger generate the dynamical evolution of the system 
by infinitesimal stages, in each of which the instant t(x, y, z) is moved 
forward by an infinitesimal time dt(x, y, z) within an infinitesimal volume 
of space dxdydz. Often we call the small time space volume swept out by 
such an evolution a "bubble"; and the functional derivative d/dt(x,  y, z) 
that appears in the Tomonaga-Schwinger Schroedinger equation, a "bubble 
derivative." These bubbles are filled with operators, the Hamiltonian den- 
sity of the field theory. 

Continuum theories suppose that such a bubble can be as small as we 
please. We suppose that this is no more true of these bubbles than of helium 
bubbles, and that there is a finite (nonzero) elementary process or plexon. 
There are many plexons in the bubbles of quantum electrodynamics, enough 
to give the illusion of a continuum. 

The simplest volume is a simplex, and we may at first think of a plexon 
as an elementary simplex, if we wish to have some picture in mind. Our final 
version of the plexon, will indeed be a kind of simplex. 
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In accord with the usual quantum theory of aggregates or sets, the 
dynamical process is the product of its elementary constituents, or plexons 
and the occupation number N of these plexons composes additively when 
processes are multiplied. We use this additivity to guess the correspondence 
limit of N. The salient additive invariant of the continuum theory is the 
four-dimensional hypervolume V of a process (more accurately, of the 
bubble that supports the process), and so we suppose a fundamental 
proportionality 

V = "ran 

between 4-volume and plexon number N, the coefficient of proportionality 
being the fourth power of a fundamental time or chronon ~'. The constant 
./.4 is a fundamental quantum hypervolume or "choron." 

To be sure, the action is also an additive invariant of a process, and so 
comes to mind as an alternative candidate for the meaning of N. But we 
know from existing quantum theory that action arises as the complex phase 
of the amplitude of the process in a special basis. 

In a formal development N appears as the grade of a Grassman 
algebra operator representing maximal information about the quantum 
process. Let us consider the construction of this algebra more closely. 

3. QUANTUM TOPOLOGY 

If the time space of the world is quantum then it is quite likely that its 
topology and set theory are also. A quantum set theory has been brought to 
a primitive stage of development (Finkelstein, 1982) which we encapsulate 
here and then apply to quantum topology. 

3.1. Quantum Set Theory. Quantum set theory deals with a quantum 
object, the quantum set, whose singlets (pure states) include all the finitary 
sets of classical set theory (those generated from the null set by a finite 
number of bracket operations and unions). The Hilbert space of the 
quantum set we call S. S is also a Clifford algebra of infinite dimension 
generated by its unity 1 (representing the null set), a monadic linear 
operator Br (representing bracketing), multiplication (representing Boolean 
addition), and addition and subtraction (representing coherent quantum 
superposition). This Clifford algebra has an adjoint operation * which we 
assume commutes with Br: (Br(s))* = Br(s*). The 0 of this algebra repre- 
sents the undefined; the unit 1 represents the null set. The algebra S has 
both a Clifford product s's" and a Grassman product s'/x s" (representing 
disjoint union). We call the members of S, S numbers. The center of S, its 
coefficient ring, is the ring Int of the integers. 
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S No Grade Dim. Name Diagram 

1 0 -I Null set 

a I 0 Monad " 

ab 2 I Dyad 

abc 3 2 Triad 

abed 4 3 Tetrad 

abcde 5 4 Pentad 

Fig. 1, The simplexes of dimension - 1  to 4. The n-dimensional simplex is represented in 
projection most symmetrically by locating n + 1 points spaced at equal angles on a unit circle 
and joining them in all possible ways by simplexes of lower dimension. Here are shown the 
(invisible) null simplex, the point, the line, the triangle, the tetrahedron, and the pentahedron, 
whose projection is the ancient pentacle. 

We now apply this quantum set theory to quantum topology. 

3.2. The Classical Simplex as Grassmann Product. We work here with 
the simplest and most algebraic topology, that of simplicial complexes. We 
propose that the plexon is a four-dimensional quantum simplex or penta- 
hedron (Figure 1), suitably quantized. 

An n-dimensional simplex or n-simplex may be considered as a formal 
product of its n + 1 vertex points (Chevalley, 1955, pp. 61 and 62). In order 
to express the orientation of the simplex by the sign of this product, we 
make the points anticommute. Points within the simplex are expressed as 
formal real linear combinations of the vertex points with positive coeffi- 
cients summing to unity. These points constitute the span of the simplex. 

Thus, before forming the quantum theory, we express the classical 
simplex as a formal Grassman product of its vertices, and its span as the 
convex set of probability distributions or incoherent superpositions of its 
vertices. 

3.3. Quantization. Since the classical theory is already antisymmetric 
we use Fermi quantization for the quantum theory. In the following familiar 
parallel only the names have been changed. 

Heisenberg quantization includes: 
H1. Replace p q - q p  = 0 by p q - q p  = ih, with fundamental phase 

space area h. 
H2. Allow coherent as well as incoherent superposition. 
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Topological quantization shall consist of: 
T1. Replace pq + qp -- 0 by pq + qp = a, with fundamental time space 

element a. 
T2. Allow coherent as well as incoherent superposition. 
We suggest that topological quantization is the fundamental one, and 

that the dynamical quantization of Heisenberg is an approximate conse- 
quence. 

Accordingly we replace the Grassman product defining the classical 
simplex by a Clifford product, and replace the incoherent superpositions 
defining the span by coherent. This brings us to the following concept: 

3.4. The Quantum Simplex. Definition. A quantum simplex of dimen- 
sion n is a quantum object whose Hilbert space consists of the homogeneous 
S numbers of degree (grade) n + 1, their monadic factors being interpreted 
as describing its vertices. 

It is natural to admit unlimited superposition, even of different dimen- 
sions, and then a quantum simplex is just a quantum set with a special 
interpretation. The emission vector (state vector) for a quantum simplex is 
an S number. 

The classical simplex degenerates to 0, the S number meaning "nonset," 
when two vertices coincide, according to the rules of Grassmann algebra. 
According to rule T1. The quantum simplex loses two dimensions instead. 
For example a line becomes the null set 1 instead of the undefined 0. This 
may be understood as a cancellation of a path with its negative. 

In particular a basic quantum pentahedron is associated with five 
anticommuting monadic S numbers. Call them a, b, c, d, e and call the 
signs of their squares the signature of the pentahedron. If the pentahedron 
does not have the signature (+  + + + + ) or ( . . . . .  ) then its Clifford 
algebra includes a Dirac algebra. To construct this algebra, imagine one 
vertex, say e, at the origin. Then the lines ea, eb, ec, ed, for suitably chosen 
e, generate a Dirac sedenion algebra, with signature ( + - - - )  or 
( - + + + ) .  

3.5. The Quantum Simplex Points in All Directions. The classical 
simplex s in dimension 4 has just five vertices (Figure 1). This shows in 
several ways: 

C1. s is the product of five points. 
C2. For just five points p is it true that p is a vertex ( == factor) of s? 
C3. The group of mappings of the points that leaves s fixed is the 

symmetric group on five objects (modulo irrelevant sign changes of the five 
objects). 
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A basic quantum simplex s enjoys only the first of these three proper- 
ties: 

Q1. s is the Clifford product of five points (by definition). 
Q2. For every point p in a five-dimensional subspace of S, p is a 

vertex ( = factor) of s. 
Q3. The group of mappings of the points that leaves s fixed is the 

orthogonal group in five dimensions (with signature determined by the 
Clifford squares of any five orthogonal vertices). 

Thus the classical simplex breaks orthogonal invariance (C3), while the 
quantum simplex generates its own orthogonal invariance (Q3). 

3.6. The Quantum Complex. Classically, a complex is a set of sim- 
plexes closed under the boundary operator. So we must formulate the ideas 
of "set of simplexes" and "boundary" in quantum topology. The first is 
immediate. In quantum set theory, set and simplex are synonymous. A 
quantum complex is therefore a simplex whose points are simplexes, and it 
is a simplex whose points are sets, which means it is just a simplex. (It 
hardly pays to exclude the simplex 1 from the complexes.) 

Thus the quantum complex too is described by an S number. But the 
interpretation is, perhaps, different: the factors of this number are taken to 
be simplexes in the complex, not points in the simplex. 

The theory of the boundary operator is longer and will be presented 
elsewhere. 

The five points of each pentad have ten bilinear products, generators of 
the isotropy group of the pentahedron. We have identified six of these 
products with Lorentz generators, for example. If two pentahedrons are not 
contiguous--have no points in common--then the isotropy group of one 
pentahedron leaves invariant the points of the other and the two isotropy 
groups commute with each other. This commutativity ultimately follows 
from the anticommutativity of distinct points, monadic S numbers, and 
reproduces the characteristic relation between two local groups in a theory 
with a gauge invariance group. Our isotropy group is thus local, not global. 
It is an optimistic but natural speculation that this isotropy is the raw 
material for all the gauge groups of Nature, including the gravitational. 

6. DISCUSSION 

The classical pentahedron points in five directions, the quantum one 
points in all. This means that the quantum simplicial model of time space 
may be free from a great impediment to the classical simplicial model. The 
classical simplicial model breaks Lorentz invariance everywhere, makes 
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conservation of angular momentum mysterious. The quantum one preserves 
a Lorentz invariance for every pentahedron of suitable signature. 

In the same way we can demonstrate that all quantum simplexes of the 
same dimension and signature are congruent. While classically each 
Euclidean n-simplex carries n ( n  +1) /2  length parameters as coordinates, 
indicating its infinite internal structure, the quantum simplex carries only its 
signature. If this signature is restricted to a physically suitable value, say 
( -  - + + + ), then the resulting pentahedron is essentially unique, as befits 
a plexon. 

We build here on an unfinished foundation. What determines the 
dimension and signature of the pentahedron and thus of time space? As yet 
the theory could accomodate any signature, and Nature prefers time-space 
signature (+ - - - )  or ( -  + + +). We mention some speculations on this 
question in passing. 

One way to fix the signature is to postulate a causal order among the 
monads of a pentahedron. Aleksandrov (1955) and Pimenov (1968) among 
others point out that a causal relation determines the signature of its time 
space to be (+ . . . . . .  ) or ( -  + + . . .  +). 

When we draw a Feynman diagram, we do not expect its arrows to 
partially order its points. Then loops express not a causal anomaly but pair 
creation and annihilation. 

Now, however, we are making the time space that underlies even 
Feynman diagrams, and which is causally ordered in all the theories of the 
present day. We seem to lose nothing by retaining the common assumption 
of a global causal order, except Shestov's principle of anarchy: "Everything 
is possible." 

If in addition the fundamental physical quantities were the linking 
numbers of strings, this would fix the dimension, for it is well known that 
only in three spatial dimensions can strings link one another or themselves. 

An alternative speculation: The ratio n 1 : n 2 of monads to dyads is 1 : 2 
only for the pentahedron. If energetic considerations favor this ratio (which 
recalls the virial theorem for potential and kinetic energy ratios in the 
Kepler problem) then the equilibrium expectation value of the simplicial 
dimension would be 4, and other dimensions would appear only in fluctua- 
tions from equilibrium. 

Finally we point out what may be merely an irrelevant coincidence: If 
we generate S numbers rank by rank beginning with 1, which has rank 0, 
and quit when we reach a rank that includes a monadic S number of 
negative signature, a "timelike direction," we will find ourselves with the 
ranks 0,1,2,3, and a 16-dimensional subalgebra of S isomorphic to the 
Dirac sedenions of special relativity, with three space dimensions and one 
time. 
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We will have to build both time space coordinates x and field variables 
f(x) out of the S numbers for the simplexes of the world. Since the 
anticommutation relations between remote simplexes are trivial, the first 
field operators to be built will not be the canonical ones but those of the 
third quantized, hyperquantized, or generating functional schemes. 

We have used the same bracket operator Br to make complexes out of 
simplexes, simplexes out of points, and points out of their constituent sets, 
just as we use one membership relation for the analogous classical construc- 
tions in the language of set theory. This simplifies vertically, a greater 
unification than the unified field theory, which simplifies horizontally and 
on only one level. We call a theory like this, with but one basic concept, a 
monophysics. 

Our hunt for the universe is still close to home, but we have encoun- 
tered encouraging spoor and a section of clear trail lies ahead: the develop- 
ment of quantum simplicial topology. 
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